A blocked QR-decomposition for the parallel symmetric eigenvalue problem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A blocked QR-decomposition for the parallel symmetric eigenvalue problem

In this paper we present a new stable algorithm for the parallel QR-decomposition of ”tall and skinny” matrices. The algorithm has been developed for the dense symmetric eigensolver ELPA, whereat the QR-decomposition of tall and skinny matrices represents an important substep. Our new approach is based on the fast but unstable CholeskyQR algorithm [1]. We show the stability of our new algorithm...

متن کامل

A fully parallel algorithm for the symmetric eigenvalue problem

In this paper we present a parallel algorithm for the symmetric algebraic eigenvalue problem. The algorithm is based upon a divide and conquer scheme suggested by Cuppen for computing the eigensystem of a symmetric tridiagonal matrix. We extend this idea to obtain a parallel algorithm that retains a number of active parallel processes that is greater than or equal to the initial number througho...

متن کامل

Some results on the symmetric doubly stochastic inverse eigenvalue problem

‎The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$‎, ‎to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$‎. ‎If there exists an $ntimes n$ symmetric doubly stochastic ...

متن کامل

The symmetric eigenvalue complementarity problem

In this paper the Eigenvalue Complementarity Problem (EiCP) with real symmetric matrices is addressed. It is shown that the symmetric (EiCP) is equivalent to finding an equilibrium solution of a differentiable optimization problem in a compact set. A necessary and sufficient condition for solvability is obtained which, when verified, gives a convenient starting point for any gradient-ascent loc...

متن کامل

Reduction of the RPA eigenvalue problem and a generalized Cholesky decomposition for real-symmetric matrices

The particular symmetry of the random-phase-approximation (RPA) matrix has been utilized in the past to reduce the RPA eigenvalue problem into a symmetric-matrix problem of half the dimension. The condition of positive definiteness of at least one of the matrices A ± B has been imposed (where A and B are the submatrices of the RPA matrix) so that, e.g., its square root can be found by Cholesky ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Parallel Computing

سال: 2014

ISSN: 0167-8191

DOI: 10.1016/j.parco.2014.03.010